
Visual Place Recognition

Abstract—Visual position recognition affects the safety and

accuracy of automatic driving. To accurately identify the

location, this paper studies a visual place recognition algorithm

based on HMM filter and HMM smoother. Firstly, we

constructed the traffic situations in Canberra city. Then the

mathematical models of the HMM filter and HMM smoother

were performed. Finally, the vehicle position was predicted

based on the algorithms. Experiment results show that HMM

smoother is better than HMM filter in terms of prediction

accuracy.

Keywords—visual place recognition, HMM filter, HMM

smoother

I. INTRODUCTION

Visual place recognition is a well-defined problem: given
an image taken at a certain place, people, animals, computers
or robots should judge whether the corresponding place of the
image has been seen before; If it has been seen, where is the
image taken [1]. This technique provides basic position
information for automatic driving, and its accuracy directly
determines the safety and accuracy of automatic driving.
Therefore, the research on visual place recognition is
particularly basic and important.

Due to the large amount of data, low latency and the
limitation of the hardware in autonomous driving vison-based
scenarios, it is required to develop an algorithm that can not
only process the image data output by the camera sensor
quickly and efficiently but also reduce the storage and
computing burden for the hardware chips.

For vision-based location recognition, the sophisticated
local-invariant feature extractors, such as Scale-Invariant
Feature Transformation and Speed-Up Robust Features, hand-
crafted global image descriptors, such as Generalized Search
Tress, and the bag-of-visual-words approach were widely
used [2]. Recent years, with the development of the deep
learning, the convolution neural network is a widely used
technique. It offers state-of-the-art performance on many
category-level recognition tasks, such as object classification,
scene recognition, and image classification.

However, all the techniques above required not only high-
performance computing of the hardware but also a huge
storage of the memory. It needs to store all the past picture
data and compare it with the sensor’s current measurements,
which will highly increase the cost of the autonomous vehicle.

Markov chain has the characteristics of the current state
only depends on the previous state, fast computation, easy
deployment and does not require too high performance.
Hidden Markov Chains only require the measurements of each
current state. This feature can significantly improve the speed
of the recognition and highly reduce the amount of data to be
processed and stored for the place recognition. In this paper,
we proposed two methods based on Hidden Markov Chains.

Filtering is the problem if estimating the current state at this
time given the history of the sensor (camera) measurements.
Hidden Markov filter obtains the estimated current state based
on the past measurements, while hidden Markov Smoother
obtains the estimated state based on the measurements before
and after it, which are forward pass and backward pass. It is

the problem of estimating the state at this time given past,
present and future sensor measurements. The key point in the
algorithms above is to obtain a reasonable transmission matrix
that can compute to estimate the current state of the
autonomous driving vehicle. On the basis of the filter, the
smoother introduces more state data, which will improve the
accuracy of location recognition.

Thus, in this paper, the filter and smoother of Hidden
Markov Chains were used in place recognition. It is expected
that the algorithms can avoid the hardware performance
requirements while maintaining high accuracy. It can improve
computing speed and simplify the complexity of location
recognition algorithms. This paper is organized as follows. In
section 1, we introduced the topic of this paper, system
modeling and problem statement is in section 2, the proposed
algorithm is described in section 3, detailed simulation result
is shown in section 4 and in section 5 summarize this paper.

II. SYSTEM MODELING

As mentioned above, this paper mainly discusses the

problem of re-localization in autonomous driving systems.

Different from existing hierarchical clustering-based bag-of-

words methods, this paper introduces a directed graph-based

Hidden Markov Model. Combined with observation it can

relocate vehicle positions. This paper uses a Hidden Markov

Model based filter to solve the location. In addition, this paper

also uses HMM based smoother to verify the results.

A. map prior probability

In order to describe the actual position of the vehicle in the

map, we establish a position set 𝑉 = 𝑝1, 𝑝2, … 𝑝𝑖 , … , 𝑝𝑀 .

Where 𝑝𝑖 ∈ 𝑉 represents a certain position in the map. Let

𝐸𝑖𝑗 represent the connection from the 𝑝𝑖 to the 𝑝𝑗 , where

𝑖, 𝑗  ∈ 𝑀 . Let Φ𝑖𝑗 represent the transition probability from

position 𝑝𝑖 to position 𝑝𝑗, that is, the probability that the next

status is 𝑝𝑗 when the current position is 𝑝𝑖 , which also can be

represented as 𝑃(𝑝𝑗|𝑝𝑖) . Since Φ𝑖𝑗 is expressed as

probability, the sum of transition probabilities should be one.

∑ Φ𝑖,𝑗

𝑗∈𝑠

𝑗

= 1 (1)

where 𝑠 is the position directly connected to the current

position. Since the transition probability is position

dependent, 𝐸𝑖𝑗 ≠ 𝐸𝑗𝑖 , which is 𝑃(𝑝𝑗|𝑝𝑖) ≠ 𝑃(𝑝𝑖|𝑝𝑗). From

this we can build a directed graph.

𝐺(𝑉, 𝐸, Φ)

In the graph, 𝑉, 𝐸, Φrepresent the vertex, edge, and edge

weight, respectively, and the specific definitions are as above.

As shown in the figure below, this project uses the Canberra

city center map as the system map then simulates the status

by combining the actual traffic flow data. The red vertex in

the figure represents the position 𝑝𝑖 in the model, and the blue

edge represents that the position 𝑝𝑖 is directly connected to 𝑝𝑗,

that is, 𝑃(𝑝𝑗|𝑝𝑖) ≠ 0 . We establish different transition

probabilities Φ𝑖𝑗 for different edges according to the traffic

flow. At vertex such as 1 to 9 on the main road, there will be

a higher probability of going straight and a lower probability

of stopping. Take node 1 as an example, Φ1,2 > Φ1,70 >

Φ1,1. For nodes that are not on the main road, such as node

66, the probability of driving in each direction is roughly the

same, and there is also a certain probability of parking. The

full transition probability table designed in this paper is

attached in the appendix.

70
71

63

64

72

62

51

52

61

65

60

53

59

66

73

74

70

69

57

56

55
58

68

67

54

28

32

33

34

39

40

41

45

46

47

44

42

43

37

38

35

36

29
30

26
27

31

91
95

96

92
93

94

90

82
83

8180
79

7877

97

98

99

76

84
85

86

87

89

88

102

101

103

105

1

2

3

4

5

6

7

8

9

18

19

20

22

11

10

12

13

24
14

15

16

17

Fig.1 The connection between positions in the simulated system.

B. vehicle position measurement

Let the observation result of the vehicle at a certain

position 𝑥 be 𝑦𝑥 , where 𝑦, 𝑥  ∈ 𝑉 . The vehicle may have

different observations at this location, and the probability of

observing different positions can be expressed as the

following probability.

𝑃(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖), where ∑ 𝑃(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖)
𝑝𝑗∈𝑉

𝑝𝑗
= 1.

This project uses designed discrete observation

probabilities then add Gaussian noise to simulate real

observations. Let the preset discrete observation probability

be 𝑃𝑐, and the superimposed Gaussian noise be 𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛.

In this project, different observation probabilities are

designed according to different road conditions. Among them,

the probability between the nodes directly connected to the

node is not 0, and the observation probability of the node

cannot directly connect to the current node is 0. Since this

project believes that the sensor itself has high measurement

accuracy, the probability of correct observation is much

greater than the probability of incorrect observation, namely.

𝑃(𝑦 = 𝑝𝑖|𝑥 = 𝑝𝑖) ≫ 𝑃(𝑦 ≠ 𝑝𝑖|𝑥 = 𝑝𝑖)

On average 𝑃(𝑦 = 𝑝𝑖|𝑥 = 𝑝𝑖) ≈ 0.7 . The final

observation probability of the vehicle still needs to add

Gaussian noise on the basis of the discrete probability

described above to simulate the noise situation in the

observation, then normalize it so that the probability sum is

1. The Gaussian noise superimposed in this project is 𝜇 =
𝑝𝑖 , 𝛿 = 1. The final observation probability is as follows:

𝑃(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖)

= (𝑃𝑐(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖) + 𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑝𝑗; 𝑝𝑖)) × 𝛿 (2)

𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑝𝑗; 𝑝𝑖) =
1

√2𝜋
𝑒𝑥𝑝 (−

(𝑝𝑗 − 𝑝𝑖)
2

2
) (3)

where 𝛿 is the normalization coefficient,

𝛿 = 1 + ∑ 𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑝𝑗; 𝑝𝑖)

𝑝𝑗∈𝑉

𝑝𝑗

(4)

III. PROPOSED INFERENCE ALGORITHM

HMM is an unobservable motion sequence randomly
generated by a hidden Markov chain. We use HMM filter and
HMM smoother for visual place recognition. In this way, we
could use time sequence of the images and the high
relationship between the time and position due to the limited
movement [3]. The mathematical details of HMM filter and
HMM smoother are shown below.

A. HMM filter

• The vector �̂�𝑘 ∈ 𝑅𝑛 is defined as the filter estimate,
which represents the conditional probability mass
function of 𝑋𝑘 given 𝑦1 , 𝑦2, … , 𝑦𝑘:

�̂�𝑘 = [

𝑝(𝑋𝑘 = 1|𝑦1, 𝑦2, … , 𝑦𝑘)

𝑝(𝑋𝑘 = 2|𝑦1, 𝑦2, … , 𝑦𝑘)
⋮

𝑝(𝑋𝑘 = 𝑛|𝑦1, 𝑦2, … , 𝑦𝑘)

] (5)

• The matrix 𝐴 ∈ 𝑅𝑛×𝑛 is defined as the transition
probability matrix:

𝐴 = [
𝑝(𝑋𝑘 = 1|𝑋𝑘−1 = 1) ⋯ 𝑝(𝑋𝑘 = 1|𝑋𝑘−1 = 𝑛)

⋮ ⋱ ⋮
𝑝(𝑋𝑘 = 𝑛|𝑋𝑘−1 = 1) ⋯ 𝑝(𝑋𝑘 = 𝑛|𝑋𝑘−1 = 𝑛)

] (6)

• Diagonal matrix 𝐵(𝑦𝑘) ∈ 𝑅𝑛×𝑛 is defined with
likelihoods for measurement 𝑦𝑘 on its diagonal:

𝐵(𝑦𝑘) = [
𝑝(𝑦𝑘|𝑋𝑘−1 = 1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑝(𝑦𝑘|𝑋𝑘−1 = 𝑛)

] (7)

• Then we could written the HMM filter as follows:

�̂�𝑘 = 𝑁𝑘
−1𝐵(𝑦𝑘)𝐴�̂�𝑘−1 (8)

where A�̂�𝑘−1 represents the “prediction step”,
𝑁𝑘

−1𝐵(𝑦𝑘) represents the “update step”, and 𝑁𝑘 ∈
𝑅 normalizes to ensure �̂�𝑘 is a probability mass
function, i.e.,

𝑁𝑘 = ∑ 𝑉(𝑖)𝑛
𝑖=1 with 𝑉 = 𝐵(𝑦𝑘)A�̂�𝑘−1

B. HMM smoother

The first step for HMM smoother called Forward Pass. In
this step, we have to calculate the unnormalized filter estimate.
The details are as follows.

• The vector 𝛼𝑘 ∈ 𝑅𝑛 is defined as the unnormalized
filter estimate:

𝛼𝑘 = [

𝑝(𝑋𝑘 = 1, 𝑦1, 𝑦2, … , 𝑦𝑘)

𝑝(𝑋𝑘 = 2, 𝑦1, 𝑦2, … , 𝑦𝑘)
⋮

𝑝(𝑋𝑘 = 𝑛, 𝑦1, 𝑦2, … , 𝑦𝑘)

] (9)

• When k change from 1 to T, compute the unnormalized
filter estimate:

𝛼𝑘 = 𝐵(𝑦𝑘)𝐴𝛼𝑘−1 (10)

 with 𝛼0 = 𝜋0

The second step called Backward Pass. In this step, we have
to calculate the unnormalized backward filter estimate. The
details are as follows.

• The vector 𝛽𝑘 ∈ 𝑅𝑛 is defined as the unnormalized
backward filter estimate:

𝛽𝑘 = [

𝑝(𝑋𝑘 = 1, 𝑦k+1, 𝑦k+2, … , 𝑦𝑇)

𝑝(𝑋𝑘 = 2, 𝑦k+1, 𝑦k+2, … , 𝑦𝑇)
⋮

𝑝(𝑋𝑘 = 𝑛, 𝑦k+1, 𝑦k+2, … , 𝑦𝑇)

] (11)

• When k change from T to 1, compute the unnormalized
backward filter estimate:

𝛽𝑘−1 = 𝐴′𝐵(𝑦𝑘)𝛽𝑘 (12)

 where 𝛽T = 1 representing the vector of ones, and 𝐴′
represents the transpose of A.

The final step called Multiply and Normalize. In this step,
we have to calculate the smoother estimate, which represents
the final result. The details are as follows.

• The vector 𝛾𝑘 ∈ 𝑅𝑛 is defined as the smoother
estimate:

𝛾𝑘 = [

𝑝(𝑋𝑘 = 1|𝑦1 , 𝑦2, … , 𝑦𝑇)

𝑝(𝑋𝑘 = 2|𝑦1 , 𝑦2, … , 𝑦𝑇)
⋮

𝑝(𝑋𝑘 = 𝑛|𝑦1, 𝑦2 , … , 𝑦𝑇)

] (13)

• When k change from 0 to T, computer and normalize
via elementwise multiplication:

𝛾𝑘(𝑥𝑘) =
𝛼𝑘(𝑥𝑘)𝛽𝑘(𝑥𝑘)

∑ 𝛼𝑘(𝑥𝑘)𝛽𝑘(𝑥𝑘)
(14)

for all 𝑥𝑘 ∈ {1, 2, … , 𝑛} [4].

IV. SIMULATION RESULTS

We selected 105 traffic intersections in Canberra central,
and found the current location of cars through HMM filter and
HMM smoother model. To make comparison, we set the
length of the state sequence to be generated to 50. It was
required to design an evaluation method. In this simulation,
we used accuracy.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠
(15)

The simulation results are shown below.

A. Initial state = 5

We started experiment from setting initial state as 5 and did

the following experiments.

1) Initial state=5, Sigma = 1

Firstly, we set the covariance of Gaussian Variance as 1.

The HMM filter result can be seen in the image below.

Fig.2 Filter simulation: Initial state=5, sigma=1

The accuracy of HMM filter is 0.76.

The result of HMM smoother can be seen in the image

below.

Fig.3 Smoother simulation: Initial state=5, sigma=1

The accuracy of HMM Smoother is 0.88.

The image below shows the performance of filter and

smoother when initial state is 5 and sigma is 1.

Fig.4 Comparison: Initial state=5, sigma=1

2) Initial state=5, Sigma = 2

When setting the covariance of Gaussian noise is 2, the

result of HMM filter can be seen in the image below.

Fig.5 Filter simulation: Initial state=5, sigma=2

The accuracy of HMM filter when sigma equals 2 is 0.68.

The result of HMM smoother can be seen in the image

below.

Fig.6 Smoother simulation: Initial state=5, sigma=2

The accuracy of HMM smoother is 0.82.

The image below shows the performance of filter and

smoother when initial state is 5 and sigma is 2.

Fig.7 Comparison: Initial state=5, sigma=2

B. Initial state = 90

Then we set the initial state as 90, sigma = 1

Similarly, we set the covariance of Gaussian Variance as 1.

The HMM filter result can be seen in the image below.

Fig.8 Filter simulation: Initial state=90, sigma=1

The accuracy of HMM filter in this assumption is 0.76.

The result of HMM smoother can be seen below.

Fig.9 Smoother simulation: Initial state=90, sigma=1

The accuracy of HMM smoother in this assumption is

0.82.

The image below shows the performance of filter and

smoother when initial state is 90 and sigma is 1.

Fig.10 Comparison: Initial state=90, sigma=1

C. Summary

We record the accuracy in the figure above in the

following table.
TABLE 1. THE ACCURACY OF HMM FILTER AND HMM SMOOTHER

 HMM filter

accuracy

HMM smoother

accuracy

Initial state=5 76% 88%

 HMM filter

accuracy

HMM smoother

accuracy

Sigma = 1

Initial state=5

Sigma = 2
68% 82%

Initial state=90

Sigma = 1
76% 82%

It could be drawn the following conclusions.

Firstly, it can be found that at the beginning, both the

filter and smoother show a good performance. Then it can be

seen that the smoother validates a more accurate estimations

of the state. We could see that the error between the true and

estimated state of the HMM smother is less than the error of

the HMM filter. Especially at the end of the states, the results

of the smoother are more consistent with the real state.

Due to the HMM smoother considered not only the past

measurements of the autonomous vehicle, but also the future

states of the vehicle. In other words, through backward pass,

more knowledge is considered into the model when

estimating the current state, which will lead a better

estimation, while the filter can only estimate the state by

using the past knowledge. Thus, it is reasonable that as the

time went by, the advantages of the smoother over the filter

become more and more obvious.

However, the smoother will meet more limitations in

practice. In practical scenarios, it is difficult to obtain a large

number of subsequent measurements of the state to be

estimated. Thus, to use the smoother in practice, it is required

more sensors on the vehicle and a good fusion of the sensors.

Secondly, the added Gaussian noise when generated

measurements have also made affects in HMM filter and

HMM smoother. It could be found that the higher the

variance of the noise, the worse the results of the filter and

smoother.

Thirdly, for the states where the mismatch happened, the

confusion matrix affected the HMM filter and smoother. In

practice, it is the accuracy of the sensor. Due to the errors in

sensors when capture the places, the algorithm cannot obtain

absolutely accurate measurements as the input, which will

lead mismatches in the simulations results. What’s more,

Bayesian algorithm is based on possibilities. If the prior belief

or likelihood are inaccurate, the result will be bound to a

mismatch. For this point, the algorithm like HMM smoother

that introduces more knowledge will have an even greater

advantage. Especially in the use of autonomous driving

which requires extreme security and reliability, HMM

smoother will be a better choice.

V. CONCLUSION

In this paper, HMM filter and HMM smoother were used
for visual position recognition. By comparing the state
observation results under different initial positions, we found
that the HMM smoother had better performance. By
comparing different gaussian noise, we found that the higher
the noise variance, the worse the results of filter and smoother.
Besides, after the theoretical analysis, we thought that the
errors which led to the difference between the real states and
the simulation results are the accuracy of the sensor. Thus, In
order to improve the accuracy of position recognition, we put
forward the following conclusions: firstly, HMM smoother
performs a better performance with more limitations.
Secondly, the sensors which used to do measurements played
an important role in predictions. Improving the performance
of the sensors will be an essential solution if the prediction
algorithm doesn’t work well.

REFERENCES

[1] S. Lowry, N. Sunderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual place recognition: A survey,” IEEE
Transactions on Robotics, vol. 32, no. 1, pp. 1–19, 2016.

[2] Z. Zeng, J. Zhang, X. Wang, Y. Chen, and C. Zhu, “Place recognition:
An overview of Vision Perspective,” Applied Sciences, vol. 8, no. 11,
p. 2257, 2018.

[3] D. Doan, Y. Latif, T.-J. Chin, Y. Liu, T.-T. Do, and I. Reid, “Scalable
place recognition under appearance change for autonomous driving,”
2019 IEEE/CVF International Conference on Computer Vision (ICCV),
2019.

[4] “Wattle,” wattlecourses.anu.edu.au. [Online]. Available:
https://wattlecourses.anu.edu.au/course/view.php?id=38159.

APPENDIX

A. The transition probability table

Figure A. the full transition matrix, since the matrix has 105 cols and 105 rows, it can only be presented as a figure. This

figure has 105x105 pixels, each pixel represents one of the elements in the matrix. The brightness of pixels represents the

probability of that element. The lighter pixel will have a larger probability. The sum of each cols are equal to one.

B. The observation matrix

Figure B The full observation matrix. This is a 105x105 figure, where each pixel represents one of the elements in

observation matrix, the definition of brightness is the same as transition matrix figure. The average value of diagonal elements

is 0.7.

