
Visual Place Recognition 

Abstract—Visual position recognition affects the safety and 

accuracy of automatic driving. To accurately identify the 

location, this paper studies a visual place recognition algorithm 

based on HMM filter and HMM smoother. Firstly, we 

constructed the traffic situations in Canberra city. Then the 

mathematical models of the HMM filter and HMM smoother 

were performed. Finally, the vehicle position was predicted 

based on the algorithms. Experiment results show that HMM 

smoother is better than HMM filter in terms of prediction 

accuracy.  

Keywords—visual place recognition, HMM filter, HMM 

smoother 

I. INTRODUCTION  

Visual place recognition is a well-defined problem: given 
an image taken at a certain place, people, animals, computers 
or robots should judge whether the corresponding place of the 
image has been seen before; If it has been seen, where is the 
image taken [1]. This technique provides basic position 
information for automatic driving, and its accuracy directly 
determines the safety and accuracy of automatic driving. 
Therefore, the research on visual place recognition is 
particularly basic and important. 

Due to the large amount of data, low latency and the 
limitation of the hardware in autonomous driving vison-based 
scenarios, it is required to develop an algorithm that can not 
only process the image data output by the camera sensor 
quickly and efficiently but also reduce the storage and 
computing burden for the hardware chips.   

For vision-based location recognition, the sophisticated 
local-invariant feature extractors, such as Scale-Invariant 
Feature Transformation and Speed-Up Robust Features, hand-
crafted global image descriptors, such as Generalized Search 
Tress, and the bag-of-visual-words approach were widely 
used [2]. Recent years, with the development of the deep 
learning, the convolution neural network is a widely used 
technique. It offers state-of-the-art performance on many 
category-level recognition tasks, such as object classification, 
scene recognition, and image classification.   

However, all the techniques above required not only high-
performance computing of the hardware but also a huge 
storage of the memory. It needs to store all the past picture 
data and compare it with the sensor’s current measurements, 
which will highly increase the cost of the autonomous vehicle. 

Markov chain has the characteristics of the current state 
only depends on the previous state, fast computation, easy 
deployment and does not require too high performance. 
Hidden Markov Chains only require the measurements of each 
current state. This feature can significantly improve the speed 
of the recognition and highly reduce the amount of data to be 
processed and stored for the place recognition. In this paper, 
we proposed two methods based on Hidden Markov Chains. 

Filtering is the problem if estimating the current state at this 
time given the history of the sensor (camera) measurements. 
Hidden Markov filter obtains the estimated current state based 
on the past measurements, while hidden Markov Smoother 
obtains the estimated state based on the measurements before 
and after it, which are forward pass and backward pass. It is 

the problem of estimating the state at this time given past, 
present and future sensor measurements. The key point in the 
algorithms above is to obtain a reasonable transmission matrix 
that can compute to estimate the current state of the 
autonomous driving vehicle. On the basis of the filter, the 
smoother introduces more state data, which will improve the 
accuracy of location recognition. 

Thus, in this paper, the filter and smoother of Hidden 
Markov Chains were used in place recognition. It is expected 
that the algorithms can avoid the hardware performance 
requirements while maintaining high accuracy. It can improve 
computing speed and simplify the complexity of location 
recognition algorithms. This paper is organized as follows. In 
section 1, we introduced the topic of this paper, system 
modeling and problem statement is in section 2, the proposed 
algorithm is described in section 3, detailed simulation result 
is shown in section 4 and in section 5 summarize this paper. 

 

II. SYSTEM MODELING 

As mentioned above, this paper mainly discusses the 

problem of re-localization in autonomous driving systems. 

Different from existing hierarchical clustering-based bag-of-

words methods, this paper introduces a directed graph-based 

Hidden Markov Model. Combined with observation it can 

relocate vehicle positions. This paper uses a Hidden Markov 

Model based filter to solve the location. In addition, this paper 

also uses HMM based smoother to verify the results. 

A. map prior probability 

In order to describe the actual position of the vehicle in the 

map, we establish a position set 𝑉 = 𝑝1, 𝑝2, … 𝑝𝑖 , … , 𝑝𝑀 . 

Where 𝑝𝑖 ∈ 𝑉 represents a certain position in the map. Let 

𝐸𝑖𝑗  represent the connection from the 𝑝𝑖  to the 𝑝𝑗  , where 

𝑖, 𝑗  ∈ 𝑀 . Let Φ𝑖𝑗 represent the transition probability from 

position 𝑝𝑖  to position 𝑝𝑗, that is, the probability that the next 

status is 𝑝𝑗 when the current position is 𝑝𝑖 , which also can be 

represented as 𝑃(𝑝𝑗|𝑝𝑖) . Since Φ𝑖𝑗  is expressed as 

probability, the sum of transition probabilities should be one. 

∑ Φ𝑖,𝑗

𝑗∈𝑠

𝑗

= 1 (1) 

where 𝑠  is the position directly connected to the current 

position. Since the transition probability is position 

dependent, 𝐸𝑖𝑗 ≠ 𝐸𝑗𝑖 , which is 𝑃(𝑝𝑗|𝑝𝑖) ≠ 𝑃(𝑝𝑖|𝑝𝑗). From 

this we can build a directed graph. 

𝐺(𝑉, 𝐸, Φ) 

In the graph, 𝑉, 𝐸, Φrepresent the vertex, edge, and edge 

weight, respectively, and the specific definitions are as above. 

As shown in the figure below, this project uses the Canberra 

city center map as the system map then simulates the status 

by combining the actual traffic flow data. The red vertex in 

the figure represents the position 𝑝𝑖  in the model, and the blue 

edge represents that the position 𝑝𝑖  is directly connected to 𝑝𝑗, 

that is, 𝑃(𝑝𝑗|𝑝𝑖) ≠ 0 . We establish different transition 

probabilities Φ𝑖𝑗  for different edges according to the traffic 



flow. At vertex such as 1 to 9 on the main road, there will be 

a higher probability of going straight and a lower probability 

of stopping. Take node 1 as an example,  Φ1,2 > Φ1,70 >

Φ1,1. For nodes that are not on the main road, such as node 

66, the probability of driving in each direction is roughly the 

same, and there is also a certain probability of parking. The 

full transition probability table designed in this paper is 

attached in the appendix. 
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Fig.1 The connection between positions in the simulated system. 

 

B. vehicle position measurement 

Let the observation result of the vehicle at a certain 

position 𝑥  be 𝑦𝑥 , where 𝑦, 𝑥  ∈ 𝑉 . The vehicle may have 

different observations at this location, and the probability of 

observing different positions can be expressed as the 

following probability. 

𝑃(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖), where ∑ 𝑃(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖)
𝑝𝑗∈𝑉

𝑝𝑗
= 1. 

This project uses designed discrete observation 

probabilities then add Gaussian noise to simulate real 

observations. Let the preset discrete observation probability 

be 𝑃𝑐, and the superimposed Gaussian noise be 𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛.  

In this project, different observation probabilities are 

designed according to different road conditions. Among them, 

the probability between the nodes directly connected to the 

node is not 0, and the observation probability of the node 

cannot directly connect to the current node is 0. Since this 

project believes that the sensor itself has high measurement 

accuracy, the probability of correct observation is much 

greater than the probability of incorrect observation, namely. 

𝑃(𝑦 = 𝑝𝑖|𝑥 = 𝑝𝑖) ≫ 𝑃(𝑦 ≠ 𝑝𝑖|𝑥 = 𝑝𝑖) 

On average 𝑃(𝑦 = 𝑝𝑖|𝑥 = 𝑝𝑖) ≈ 0.7 . The final 

observation probability of the vehicle still needs to add 

Gaussian noise on the basis of the discrete probability 

described above to simulate the noise situation in the 

observation, then normalize it so that the probability sum is 

1. The Gaussian noise superimposed in this project is 𝜇 =
𝑝𝑖 , 𝛿 = 1. The final observation probability is as follows: 

𝑃(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖) 

= (𝑃𝑐(𝑦 = 𝑝𝑗|𝑥 = 𝑝𝑖) + 𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑝𝑗; 𝑝𝑖)) × 𝛿 (2) 

 

𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑝𝑗; 𝑝𝑖) =
1

√2𝜋
𝑒𝑥𝑝 (−

(𝑝𝑗 − 𝑝𝑖)
2

2
) (3) 

where 𝛿 is the normalization coefficient, 

𝛿 = 1 + ∑ 𝑃𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑝𝑗; 𝑝𝑖)

𝑝𝑗∈𝑉

𝑝𝑗

(4) 

 

III. PROPOSED INFERENCE ALGORITHM 

HMM is an unobservable motion sequence randomly 
generated by a hidden Markov chain. We use HMM filter and 
HMM smoother for visual place recognition. In this way, we 
could use time sequence of the images and the high 
relationship between the time and position due to the limited 
movement [3]. The mathematical details of HMM filter and 
HMM smoother are shown below. 

A. HMM filter 

• The vector �̂�𝑘 ∈ 𝑅𝑛  is defined as the filter estimate, 
which represents the conditional probability mass 
function of 𝑋𝑘 given 𝑦1 , 𝑦2, … , 𝑦𝑘:  

�̂�𝑘 = [

𝑝(𝑋𝑘 = 1|𝑦1, 𝑦2, … , 𝑦𝑘)

𝑝(𝑋𝑘 = 2|𝑦1, 𝑦2, … , 𝑦𝑘)
⋮

𝑝(𝑋𝑘 = 𝑛|𝑦1, 𝑦2, … , 𝑦𝑘)

] (5) 

• The matrix 𝐴 ∈ 𝑅𝑛×𝑛  is defined as the transition 
probability matrix: 

𝐴 = [
𝑝(𝑋𝑘 = 1|𝑋𝑘−1 = 1) ⋯ 𝑝(𝑋𝑘 = 1|𝑋𝑘−1 = 𝑛)

⋮ ⋱ ⋮
𝑝(𝑋𝑘 = 𝑛|𝑋𝑘−1 = 1) ⋯ 𝑝(𝑋𝑘 = 𝑛|𝑋𝑘−1 = 𝑛)

] (6) 

• Diagonal matrix 𝐵(𝑦𝑘) ∈ 𝑅𝑛×𝑛  is defined with 
likelihoods for measurement 𝑦𝑘  on its diagonal: 

𝐵(𝑦𝑘) = [
𝑝(𝑦𝑘|𝑋𝑘−1 = 1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑝(𝑦𝑘|𝑋𝑘−1 = 𝑛)

] (7) 

• Then we could written the HMM filter as follows: 

�̂�𝑘 = 𝑁𝑘
−1𝐵(𝑦𝑘)𝐴�̂�𝑘−1 (8) 

where A�̂�𝑘−1  represents the “prediction step”,  
𝑁𝑘

−1𝐵(𝑦𝑘) represents the “update step”, and 𝑁𝑘 ∈
𝑅  normalizes to ensure �̂�𝑘  is a probability mass 
function, i.e., 

𝑁𝑘 = ∑ 𝑉(𝑖)𝑛
𝑖=1  with  𝑉 = 𝐵(𝑦𝑘)A�̂�𝑘−1 

 

B. HMM smoother 

The first step for HMM smoother called Forward Pass. In 
this step, we have to calculate the unnormalized filter estimate. 
The details are as follows. 

• The vector 𝛼𝑘 ∈ 𝑅𝑛  is defined as the unnormalized 
filter estimate: 



𝛼𝑘 = [

𝑝(𝑋𝑘 = 1, 𝑦1, 𝑦2, … , 𝑦𝑘)

𝑝(𝑋𝑘 = 2, 𝑦1, 𝑦2, … , 𝑦𝑘)
⋮

𝑝(𝑋𝑘 = 𝑛, 𝑦1, 𝑦2, … , 𝑦𝑘)

] (9) 

• When k change from 1 to T, compute the unnormalized 
filter estimate: 

𝛼𝑘 = 𝐵(𝑦𝑘)𝐴𝛼𝑘−1 (10) 

            with 𝛼0 = 𝜋0 

The second step called Backward Pass. In this step, we have 
to calculate the unnormalized backward filter estimate. The 
details are as follows. 

• The vector 𝛽𝑘 ∈ 𝑅𝑛  is defined as the unnormalized 
backward filter estimate: 

𝛽𝑘 = [

𝑝(𝑋𝑘 = 1, 𝑦k+1, 𝑦k+2, … , 𝑦𝑇)

𝑝(𝑋𝑘 = 2, 𝑦k+1, 𝑦k+2, … , 𝑦𝑇)
⋮

𝑝(𝑋𝑘 = 𝑛, 𝑦k+1, 𝑦k+2, … , 𝑦𝑇)

] (11) 

• When k change from T to 1, compute the unnormalized 
backward filter estimate: 

𝛽𝑘−1 = 𝐴′𝐵(𝑦𝑘)𝛽𝑘 (12) 

        where 𝛽T = 1 representing the vector of ones,  and 𝐴′ 
represents the transpose of A. 

The final step called Multiply and Normalize. In this step, 
we have to calculate the smoother estimate, which represents 
the final result. The details are as follows. 

• The vector 𝛾𝑘 ∈ 𝑅𝑛  is defined as the smoother 
estimate: 

𝛾𝑘 = [

𝑝(𝑋𝑘 = 1|𝑦1 , 𝑦2, … , 𝑦𝑇)

𝑝(𝑋𝑘 = 2|𝑦1 , 𝑦2, … , 𝑦𝑇)
⋮

𝑝(𝑋𝑘 = 𝑛|𝑦1, 𝑦2 , … , 𝑦𝑇)

] (13) 

• When k change from 0 to T, computer and normalize 
via elementwise multiplication: 

𝛾𝑘(𝑥𝑘) =
𝛼𝑘(𝑥𝑘)𝛽𝑘(𝑥𝑘)

∑ 𝛼𝑘(𝑥𝑘)𝛽𝑘(𝑥𝑘)
(14) 

for all 𝑥𝑘 ∈ {1, 2, … , 𝑛} [4]. 

 

 

 

 

IV. SIMULATION RESULTS 

We selected 105 traffic intersections in Canberra central, 
and found the current location of cars through HMM filter and 
HMM smoother model. To make comparison, we set the 
length of the state sequence to be generated to 50. It was 
required to design an evaluation method. In this simulation, 
we used accuracy. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑎𝑡𝑒𝑠
(15) 

The simulation results are shown below. 

A. Initial state = 5 

We started experiment from setting initial state as 5 and did 

the following experiments. 

1) Initial state=5, Sigma = 1 

Firstly, we set the covariance of Gaussian Variance as 1. 

The HMM filter result can be seen in the image below. 

 
Fig.2 Filter simulation: Initial state=5, sigma=1 

The accuracy of HMM filter is 0.76. 

The result of HMM smoother can be seen in the image 

below. 

 
Fig.3 Smoother simulation: Initial state=5, sigma=1 

The accuracy of HMM Smoother is 0.88. 

The image below shows the performance of filter and 

smoother when initial state is 5 and sigma is 1. 

 
Fig.4 Comparison: Initial state=5, sigma=1 

 

2) Initial state=5, Sigma = 2 



When setting the covariance of Gaussian noise is 2, the 

result of HMM filter can be seen in the image below. 

 
Fig.5 Filter simulation: Initial state=5, sigma=2 

The accuracy of HMM filter when sigma equals 2 is 0.68.  

The result of HMM smoother can be seen in the image 

below. 

 
Fig.6 Smoother simulation: Initial state=5, sigma=2 

The accuracy of HMM smoother is 0.82. 

The image below shows the performance of filter and 

smoother when initial state is 5 and sigma is 2. 

 
Fig.7 Comparison: Initial state=5, sigma=2 

 

B. Initial state = 90 

Then we set the initial state as 90, sigma = 1 

Similarly, we set the covariance of Gaussian Variance as 1. 

The HMM filter result can be seen in the image below. 

 
Fig.8 Filter simulation: Initial state=90, sigma=1 

The accuracy of HMM filter in this assumption is 0.76. 

The result of HMM smoother can be seen below. 

 
Fig.9 Smoother simulation: Initial state=90, sigma=1 

The accuracy of HMM smoother in this assumption is 

0.82. 

The image below shows the performance of filter and 

smoother when initial state is 90 and sigma is 1. 

 

 
Fig.10 Comparison: Initial state=90, sigma=1 

 

C. Summary 

We record the accuracy in the figure above in the 

following table. 
TABLE 1. THE ACCURACY OF HMM FILTER AND HMM SMOOTHER 

 HMM filter 

accuracy 

HMM smoother 

accuracy 

Initial state=5 76% 88% 



 HMM filter 

accuracy 

HMM smoother 

accuracy 

Sigma = 1 

Initial state=5 

Sigma = 2 
68% 82% 

Initial state=90 

Sigma = 1 
76% 82% 

It could be drawn the following conclusions.  

Firstly, it can be found that at the beginning, both the 

filter and smoother show a good performance. Then it can be 

seen that the smoother validates a more accurate estimations 

of the state. We could see that the error between the true and 

estimated state of the HMM smother is less than the error of 

the HMM filter. Especially at the end of the states, the results 

of the smoother are more consistent with the real state. 

Due to the HMM smoother considered not only the past 

measurements of the autonomous vehicle, but also the future 

states of the vehicle. In other words, through backward pass, 

more knowledge is considered into the model when 

estimating the current state, which will lead a better 

estimation, while the filter can only estimate the state by 

using the past knowledge. Thus, it is reasonable that as the 

time went by, the advantages of the smoother over the filter 

become more and more obvious. 

However, the smoother will meet more limitations in 

practice. In practical scenarios, it is difficult to obtain a large 

number of subsequent measurements of the state to be 

estimated. Thus, to use the smoother in practice, it is required 

more sensors on the vehicle and a good fusion of the sensors. 

Secondly, the added Gaussian noise when generated 

measurements have also made affects in HMM filter and 

HMM smoother. It could be found that the higher the 

variance of the noise, the worse the results of the filter and 

smoother. 

Thirdly, for the states where the mismatch happened, the 

confusion matrix affected the HMM filter and smoother. In 

practice, it is the accuracy of the sensor. Due to the errors in 

sensors when capture the places, the algorithm cannot obtain 

absolutely accurate measurements as the input, which will 

lead mismatches in the simulations results. What’s more, 

Bayesian algorithm is based on possibilities. If the prior belief 

or likelihood are inaccurate, the result will be bound to a 

mismatch. For this point, the algorithm like HMM smoother 

that introduces more knowledge will have an even greater 

advantage. Especially in the use of autonomous driving 

which requires extreme security and reliability, HMM 

smoother will be a better choice. 

 

V. CONCLUSION 

In this paper, HMM filter and HMM smoother were used 
for visual position recognition. By comparing the state 
observation results under different initial positions, we found 
that the HMM smoother had better performance. By 
comparing different gaussian noise, we found that the higher 
the noise variance, the worse the results of filter and smoother. 
Besides, after the theoretical analysis, we thought that the 
errors which led to the difference between the real states and 
the simulation results are the accuracy of the sensor. Thus, In 
order to improve the accuracy of position recognition, we put 
forward the following conclusions: firstly, HMM smoother 
performs a better performance with more limitations. 
Secondly, the sensors which used to do measurements played 
an important role in predictions. Improving the performance 
of the sensors will be an essential solution if the prediction 
algorithm doesn’t work well.   
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APPENDIX 

A. The transition probability table 

 
Figure A. the full transition matrix, since the matrix has 105 cols and 105 rows, it can only be presented as a figure. This 

figure has 105x105 pixels, each pixel represents one of the elements in the matrix. The brightness of pixels represents the 

probability of that element. The lighter pixel will have a larger probability. The sum of each cols are equal to one. 

B. The observation matrix 

 
Figure B The full observation matrix. This is a 105x105 figure, where each pixel represents one of the elements in 

observation matrix, the definition of brightness is the same as transition matrix figure. The average value of diagonal elements 

is 0.7. 


