
 

 

  

Abstract—This article is a review and evaluation of the 
paper 360VO: Visual Odometry Using A Single 360 Camera 
in the 2022 IEEE International Conference on Robotics and 
Automation (ICRA). Starts from this article and summarizes 
the method of it and then presents the related works. Then, 
some improvement directions are proposed for this article. 
Finally, the commercial value and social value of the visual 
slam field are discussed. After decades of development in 
the field of visual slam, good localization and mapping 
effects have been achieved. This article proposes a slam 
framework based on 360 cameras and combines direct 
methods to complete localization and mapping tasks. 
Experiments show that the method proposed in this paper 
has good robustness and accuracy. 

I. EXECUTIVE SUMMARY 

HIS article is a summary and review of the paper 360VO: 

Visual Odometry Using A Single 360 Camera published in 

the 2022 IEEE International Conference on Robotics and 

Automation (ICRA). This paper uses a 360° omnidirectional 

camera to complete the simultaneous localization and mapping 

task (SLAM). simulation experiment and the real indoor and 

outdoor mapping experiments using a handheld 360° camera 

demonstrate that the method achieves good results. A 360 

camera is a special kind of camera that can capture 360° 

horizontal and 180° vertical information at once. 

360° camera can be achieved using only 2 fisheye cameras 

placed back-to-back. This significantly reduces costs, such 

these commercial products are becoming more popular and 

accessible, such as insta 360, go pro, etc. To utilize 360° 

cameras for localization and mapping, this paper proposes slam 

method based on direct method. Direct methods estimate 

camera pose and depth features by minimizing the photometric 

error. Pinhole and various fisheye camera models are not 

suitable for describing projections from 360 cameras. This 

paper proposes an appropriate 360 camera model, which uses a 

spherical model for projection. Images using equidistant 

projection assume that the 360 camera is an undistorted camera. 

The spherical camera model only needs two parameters, namely 

the width and height of the image, to complete the projection. 

The defined photometric error in DSO is expressed as the 

energy loss of the corresponding pattern. For the mapping, this 

paper models the inverse depth estimation of points with 

probability distributions. The depth range was initially assumed 

 

 

over a wide range. As new frames appear, it will continuously 

search for the best corresponding point to estimate depth more 

accurately. In order to speed up the search and guarantee the 

accuracy, the search process should follow the epipolar 

constraints. This paper searches for the minimum error on the 

epipolar line with a certain step to complete the depth 

estimation. To quantitatively evaluate the performance of this 

method, this paper proposes a synthetic dataset with dense 

features. The dataset contains 10 sequences whose features 

appear in different urban models. 360VO achieves a similar 

effect compared to the indirect method of Open-VSLAM. At 

the same time this article cuts the image and then runs orb-

slam3. Apparently, methods using 360 cameras are generally 

more robust and accurate because there is more features in 

widefield camera than normal cameras. Then, physical 

experiments of indoor and outdoor mapping based on handheld 

360 cameras have well demonstrated the effect of the algorithm. 

II. BACKGROUND 

The visual odometry (VO) or visual-inertial odometry (VIO) 

problem has been extensively studied in the past few decades. 

This problem mainly uses the information obtained from the 

image to complete the estimation of camera pose and the 

estimation of 3D landmarks in map. Visual SLAM platforms 

can be mainly divided into three categories according to 

different camera types: monocular cameras, stereo cameras and 

RGBD cameras. The monocular camera refers to a system that 

uses a single camera to complete mapping (such as Apple 

ARKit). stereo camera refers to a system that uses two cameras 

with known extrinsic parameters to complete the mapping (such 

as Leap Motion, ZED). Since the monocular camera loses the 

scale information in the process of pose estimation, it is 

necessary to introduce auxiliary method such as odometer to 

calculate the scale information. However, the scale information 

can be more easily recovered when the stereo cameras are used. 

Neither monocular nor binocular cameras can easily calculate 

depth information, and the use of RGBD cameras is a good 

solution to this problem. RGBD cameras usually use the time-

of-flight method ToF (such as Microsoft Kinect-2), and the 

structured light method (such as Microsoft Kinect-1, Apple 

Prime Sense) to obtain depth information [1]. good positioning 

and mapping performance can also be obtained in areas such as 

dark light and weak textures. But its higher cost compared to 

cameras limits its widesp use. 

Research Report of 360VO: Visual 
Odometry Using A Single 360 Camera 

Zishun Zhou  

T 



 

 

MonoSLAM [2][3] is the pioneer work of visual slam systems. 

Produced by Andrew J Davison with support from the 

Engineering and Physical Sciences Research Council (EPSRC) 

Advanced Research Fellowship programme in the UK. 

MonoSLAM uses Extended Kalman Filter as the backend to 

track sparse feature points in the frontend. MonoSLAM is based 

on EKF, taking the current state of the camera and all landmark 

points as state quantities, and updating its mean and covariance.  

In 2007, Klein et al. proposed PTAM (Parallel Tracking and 

Mapping) [6], which is also an important event in the 

development of visual SLAM, and the project was mainly 

funded by Oxford University. The significance of PTAM lies in 

the following two aspects:  

1. PTAM proposes and realizes the parallelization of the 

tracking and mapping process.  

2. PTAM is the first slam framework to use nonlinear 

optimization instead of traditional filter as backend. 

3. The system also introduces a keyframe mechanism to 

reduce computation and better optimize the map.  

ORB-SLAM is a very famous successor of PTAM [7], This 

work was supported by the Direccion General de Investigaci ´ 

on of ´ Spain. It was proposed in 2015 and is one of the most 

well-established and easy-to-use systems in modern SLAM 

systems. Currently ORB-SLAM has been developed to ORB-

SLAM3[8]. The advantages of the ORB-SLAM3 system can be 

mainly summarized as follows: 

1. Supports monocular, binocular and RGBD modes. 

2. The system mainly based on calculate FAST-ORB feature, 

including visual odometry and close-loop detection modules. 

Compared with feature points such as SIFT or SURF, ORB 

feature points have faster calculation speed and can realize 

real-time calculation. In addition, the feature descriptor of 

ORB can provide certain rotation and scaling invariance. 

 

3. The system introduces a loop closure detection system 

based on hierarchical clustering model DBoW2[5]. 

Compared with the traditional SLAM system based on 

extended Kalman filter, this system can better solve the 

problem of cumulative error. At the same time, it can be 

quickly retrieved after being lost. 

4. The system uses multiple threads to synchronously 

complete the tasks of tracking, local optimization and global 

optimization, making the operation more efficient. 

The main system components of orb-slam is shown in Figure 1 

 

Figure 1 Main system components of ORB-SLAM3 

Large Scale Direct monocular SLAM is a SLAM work 

proposed by J. Engle et al. in 2014 [9][10], sponsored by the 

Technical University of Munich. Unlike ORB-SLAM, which 

uses feature points to extract image features, LSD-SLAM uses 

a direct method to complete feature extraction. The core 

 

framework sensor type sponsor webpage 

MonoSLAM monocamera University of Oxford https://github.com/hanmekim/SceneLib2 

PTAM monocamera University of Oxford http://www.robots.ox.ac.uk/~gk/PTAM/ 

ORB-SLAM 

mainly 

monocamera 

University of 

Zaragoza http://webdiis.unizar.es/~raulmur/orbslam/ 

LSD-SLAM 

mainly 

monocamera 

Technical University 

of Munich http://vision.in.tum.de/research/vslam/lsdslam 

SVO monocamera University of Zurich https://github.com/uzh-rpg/rpg_svo 

DTAM RGB-D 

Imperial College 

London https://github.com/anuranbaka/OpenDTAM 

DVO RGB-D 

Technical University 

of Munich https://github.com/tum-vision/dvo_slam 

DSO monocamera 

Technical University 

of Munich https://github.com/JakobEngel/dso 

RTAB-MAP 

stereo 

camera/RGB-D 

University of 

Sherbrooke https://github.com/introlab/rtabmap 

VINS-

Fusion 

monocamera 

stereo cameras HKUST 

https://github.com/HKUST-Aerial-

Robotics/VINS-Fusion 

 

TABLE 1 COMMON USED VISUAL SLAM FRAMEWORK 



 

 

contribution of LSD-SLAM is the application of direct methods 

to semi-dense monocular SLAM. Not only does it not need to 

compute feature points, it also builds semi-dense maps. 

Compared with the feature point method, the direct method can 

be used to complete the mapping in the missing feature point 

area, but it is prone to loss problems when the camera moves 

too fast. Furthermore, since loop closure detection usually relies 

on the clustering of feature points[5], LSD-SLAM still needs to 

compute feature points. 

Semi-direct Visual Odoemtry (SVO) [11]. It is a semi-direct 

method based visual odometry proposed by Forster et al. The 

framework mixes feature points with direct methods. SVO 

tracks some keypoints and then performs block matching to 

estimate camera motion. Since it uses the sparse direct method, 

it neither has to work hard to compute descriptors nor deal with 

as much information as dense and semi-dense, so it can achieve 

real-time performance even on low-end computing platforms. 

Some commonly used SLAM systems can be summarized in 

Table 1. 

The core of visual SLAM is to estimate the pose and position 

of the camera and landmarks, and the key to the estimation is to 

extract the information in the image. A larger field of view can 

provide cameras with more features and a larger common field 

of view between cameras. Thereby reducing the occurrence of 

dropped frames, and can better complete the mapping task[12]. 

But the wide-angle camera has more serious distortion 

problems, and the ordinary pinhole camera model is not enough 

to directly express the wide-angle camera. Therefore, many 

scholars have done extensive research in this area. Caruso[13], 

and Matsuki [14] et al. established SLAM systems using 

omnidirectional cameras in LSD-SLAM and DSO, respectively, 

by introducing a generic camera model. Furthermore, the 

Kannala Brandt camera model [15] is used in Campos [16] et 

al. to support fisheye cameras as input in ORB-SLAM3.  

Some scholars have also devoted themselves to using more 

cameras to complete feature extraction with larger field of view. 

MULTICOL-SLAM [17] proposed a fast and applicable SLAM 

system based on multiple cameras. ROVO [18] is also a similar 

multi-camera SLAM system. The system uses a hybrid 

projection model that uses 4 cameras to cover a 360° field of 

view to detect the environment. However, the above-mentioned 

system based on the multi-camera model requires multiple 

cameras, thereby increasing the cost of use, and more cameras 

significantly increase the complexity of calibration. Using the 

reflection of the lens can also increase the viewing angle of the 

camera. X. Long [4] and others from the Institute of 

Automation, Chinese Academy of Sciences installed a high-

speed mirror in front of the camera and assisted the high-speed 

camera. In the case of using only a single ordinary pinhole 

camera, a wide-angle camera is virtualized to complete multi-

target extraction. This method can ensure local high resolution 

while obtaining a large field of view, but its complex 

mechanical structure limits the use of the scene. The above-

mentioned methods for increasing the field of view are all 

complicated. An easy way to do this is to use two wide-angle 

cameras arranged back-to-back to form a 360° wide-angle 

system. The OpenVSLAM [19] system can support such 

camera input and use the feature point-based slam algorithm to 

complete the mapping task. This paper proposes the 360VO 

framework, uses a photometric error-based approach to recover 

camera pose, and introduces epipolar constraints to recover the 

coordinates of landmark points. 

III. CONTRIBUTION 

The main contributions of this article are as follows: 

1. A projection model based on a 360° camera is proposed. 

2. An epipolar constraint relation suitable for 360 cameras is 

proposed, and an error search strategy based on epipolar is 

designed. 

3. A back-end error optimization model based on local 

windows is designed. 

A. 360 camera model: 

The camera model is used to express the relationship between 

the real world coordinate systemΩ  and the camera image 

coordinate system Ψ . Let 𝑢 = [𝑢, 𝑣]𝑇 ∈  represent the 

coordinate point in the image coordinate system, and let 𝑋𝑐 =
[𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐]𝑇 ∈Ω  represent points in the camera coordinate 

system. The camera model in this article refers to the need to 

find a mapping relationship π:  Ω →Ψ  to express the 

relationship between 3D points and 2D points. Conversely, 

π−1:Ψ →Ω can be used to express the mapping relationship 

between 2D points and 3D points. Generally speaking, the 

ordinary camera based on the pinhole imaging model can be 

expressed by the following formula. 

𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑋𝑐

𝑌𝑐

𝑍𝑐

] 

 

Figure 2 Coordinate systems used in 360VO. It takes 
advantage of a spherical model to represent camera 
projection, and the 2D image is in equirectangular projection. 

However, this camera model cannot express a camera model 

with a field of view exceeding 180°. Therefore, a spherical 

projection model suitable for 360 cameras is proposed. As 

shown in Figure 2, the projection model projects the points in 



 

 

the world coordinates onto the unit sphere to complete the 

mapping between 3D and 2D points. The projection model can 

be expressed by the following formula: 

π(𝑋𝑐) = [
𝑢
𝑣

] = 𝐾 [
𝑙𝑜𝑛
𝑙𝑎𝑡

] = 𝐾 [
𝑎𝑟𝑐𝑡𝑎𝑛(𝑋𝑐/𝑍𝑐)

−𝑎𝑟𝑐𝑠𝑖𝑛(𝑑𝑌𝑐)
] 

Where 𝑑 = 1/√𝑋𝑐
2 + 𝑌𝑐

2 + 𝑍𝑐
2 represents the reciprocal of the 

distance from the 3D point to the unit sphere. 𝑙𝑜𝑛  and 𝑙𝑎𝑡 

represent the latitude and longitude on the sphere. −𝜋 <
 𝑙𝑜𝑛 <  𝜋 𝑎𝑛𝑑 − 𝜋/2 <  𝑙𝑎𝑡 <  𝜋/2. The last K represents 

the camera intrinsic parameter. 

𝐊 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦
] = [

𝑊/2𝜋 0 𝑊/2
0 −𝐻/𝜋 𝐻/2

] 

B. Camera pose and landmark estimation 

1) get camera pose 

This article uses the direct method to complete the estimate of 

camera pose and landmark point coordinates. The direct method 

usually uses the method of minimizing the energy function to 

complete the optimal pose estimation of the camera. the energy 

function of a pixel 𝑝 ∈  𝛹 in the host frame 𝑖 regrading to a co-

visible target frame 𝑗 is 

𝐸𝐩
𝑖𝑗

= ∑  

𝐮∈𝑁p

∥ 𝑟 ∥= ∑  

𝐮∈𝑁p

𝑤𝐮 ∥∥
∥∥(𝐼𝑗[𝐮′] − 𝑏𝑗) −

𝑡𝑗𝑒𝑎𝑗

𝑡𝑖𝑒
𝑒𝑖

(𝐼𝑖[𝐮] − 𝑏𝑖)
∥∥
∥∥

𝐮′ = 𝜋(𝐑𝑗𝑖𝜋−1(𝐮, 𝑑̂𝐩) + 𝐭𝑗𝑖)

[
𝐑𝑖𝑗 𝐭𝑖𝑗

0 1
] = 𝐓𝑖𝑗 = 𝐓𝑗𝐓𝑖

−1

 

In this paper, the weighted sum of squared differences (SSD) 

algorithm is used to calculate the matching error, specifically, 

there are 8 pixels between each matching block, i.e., 8 pixels 

share the same depth. 𝑇𝑖
−1 and 𝑇𝑗

−1  are the representations of 

the 𝑖th frame and the 𝑗th frame in the world coordinate system. 

𝑢′ and 𝑢 represent the correspond pixels to be calculated in the 

𝑗  frame and the 𝑖  frame, respectively. 𝑡𝑗𝑖  represents the 

exposure time between frame 𝑖 and frame 𝑗. Finally combining 

the pixels of all neighborhood frames, the final energy function 

can be expressed as: 

𝐄 = ∑  

𝑖∈𝐹

∑  

𝐩∈𝑃𝑖

∑  

𝑗∈𝑜𝑏𝑠(𝐩)

𝐸𝐩
𝑖𝑗

 

where 𝐹  represents frames contained in local optimization 

window, 𝑃𝑖  represents a set of selected points in the frame 𝑖 and 

are randomly sampled from directional points with local 

gradients above a certain threshold, and 𝑜𝑏𝑠(𝑝) represents the 

frames that can observe point 𝑝. 

The final optimization goal can be expressed as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑀

𝐸 

where M represents the model parameter to be optimized 𝑀 =

(𝑇𝑖 , 𝑇𝑗 , 𝐾, 𝑑, 𝑎𝑖 , 𝑏𝑖 , 𝑎𝑗 , 𝑏𝑗). The optimization method of bundle 

adjustment is used. 

2) Calculate landmark pose 

Different from methods such as ORB-SLAM that use feature 

points, the direct method lacks the direct correspondence 

between two pixels. therefore, it is difficult to directly 

determine the depth of landmark points. Similar to other 

systems using the direct method [20][21][22][23], this paper 

also uses a preset depth range and an epipolar constraint to find 

the optimal pixel disparity and generate a semi-dense map. 

However, since this paper uses a camera projection model 

different from the pinhole model, it is necessary to derive a new 

epipolar constraint relationship on the spherical surface, as 

shown in Figure 3. 

 

Figure 3 Epipolar constraints. When tracking succeeds, it 
needs to create new activated points and refine their inverse 
depth via triangulation. High corresponding points of host 
frame 𝑐𝑖  lie in the epipolar curve instead of line in the target 
frame 𝑐𝑗  . 

Let the epipolar plane be ρ and the unit sphere plane be 𝑆, then 

the constraints in the camera coordinate system Ω  can be 

expressed as follows: 

{
𝜌: 𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑 = 0

𝑆: 𝑋2 + 𝑌2 + 𝑍2 = 1
 

Combined with the 360 camera projection model derived above, 

the following constraints on the epipolar curve in the pixel 

coordinate system can be obtained: 

𝐮(𝛼) = 𝜋(𝛼𝐏0
′ + (1 − 𝛼)𝐏∞

′ ), 𝛼 ∈ [0,1]

𝐏0
′ = 𝜋𝑠(𝐑𝑗𝑖𝜋

−1(𝐩, 𝑑̂𝑚𝑖𝑛) + 𝐭𝑗𝑖)

𝐏∞
′ = 𝜋𝑠(𝐑𝑗𝑖𝜋

−1(𝐩, 𝑑̂𝑚𝑎𝑥) + 𝐭𝑗𝑖)

 

Where 𝑃0
′𝑃∞

′  represents the projection point of point 𝑝 in frame 

𝑖 at the maximum disparity and the minimum disparity in frame 

𝑗 

C. local optimization 

In order to enhance robustness and reduce a certain amount of 

computation, this article uses bundle adjustment to optimize 

local frame and landmark coordinates. In this paper, the local 



 

 

frame selection is 7 adjacent keyframes and 2500 landmark 

points. 

1) keyframe selection 

The quality of key frame selection determines the quality of the 

map. In this article, the relative pose between the current frame 

and the previous key frame is calculated, and when the relative 

distance reaches a certain threshold, the frame is recorded as a 

new key frame. At the same time, since this article is based on 

the direct method, since the direct method has the assumption 

of illumination invariance, it is necessary to generate new key 

frames when the ambient light changes greatly. 

2) Optimization 

This article uses the Gauss-Newton method to complete the 

optimization of camera intrinsic parameters, extrinsic 

parameters, and optical flow parameters. Here, the disturbance 

derivation method on the SE3 manifold is used to complete the 

derivation. Its Jacobian matrix can be expressed as follows: 

𝐉𝐌=(𝐓𝑖,𝐓𝑗,𝑑̂,𝐊,𝑎𝑖,𝑏𝑖,𝑎𝑗,𝑏𝑗) = [
∂𝑟((𝛿 + 𝑥) ⊞ 𝜁0)

∂𝛿
] 

where 𝜁0 ∈ 𝑆𝐸(3)  and ⊞  denotes the operation: s e(3) × 

𝑆𝐸(3) → 𝑆𝐸(3). 

D. Evaluation 

This article innovatively proposes a SLAM framework based 

on 360 cameras. This paper proposes a projection model for the 

360 camera and derives the epipolar constraints of the sphere 

from this model. In addition, this paper combines the direct 

method to complete the localization and mapping tasks. But I 

think this article still has some things worth improving.  

1. Wide-angle cameras generally have large distortions, but 

this article does not consider the distortion, whether the 

quality of the mapping will be improved after the distortion 

correction model is introduced.  

2. This article uses a spherical projection model to model a 

360 camera, but the physical model of the camera is 

composed of two 180 wide-angle cameras arranged back-

to-back. The optical centers of the two cameras are not 

completely coincident, and if the two wide-angle cameras  

do not have the same internal parameter matrix K due to 

the existence of manufacturing tolerances, whether the 

projection model proposed in this paper can correctly 

handle this situation.  

3. This article uses the bundle adjustment method to obtain 

the intrinsic and extrinsic parameters of the camera and 

optical flow parameters. If the camera is calibrated in 

advance and the intrinsic parameters are not optimized 

during the mapping process, can a better mapping result be 

produced.  

4. In this paper, the direct method is used to complete the 

positioning and mapping, but if the feature point method is 

used, there might be a big difference between the image 

generated by the spherical projection and the image 

generated by the pinhole camera (especially at the edge of 

the image, there will be a large curvature), whether it is 

necessary to design a new corner detection algorithm and 

feature descriptor. 

IV. SOCIAL IMPART 

The SLAM system has produced enormous commercial value 

to modern society. 

In general, there are two main trends in the future development 

direction of SLAM.  

1. Lighter and smaller SLAM systems, these systems can run 

on embedded systems, mobile phones and other small 

devices to better serve mobile robots, AR/VR and other 

devices. These devices have important application 

scenarios in the fields of navigation, sports, and 

entertainment.  

2. A more sophisticated SLAM system that uses high-

performance computing equipment to complete tasks such 

as more precise 3D reconstruction. The aim of these 

applications is to perfectly reconstruct the scene without 

much restriction on computing resources and device 

portability. 

The 360VO system based on two wide-angle cameras proposed 

in this article effectively reduces the hardware cost of the 

product. Currently, there are various low-cost panoramic 

cameras such as INSTA360 and GO PRO. If these cameras can 

be combined with SLAM, new commercial value can be 

generated. 

For example, in the current popular VR/AR and short video 

effects fields, SLAM technology can build a map with more 

realistic visual effects, so as to render the superimposed effect 

of virtual objects according to the current perspective, making 

it more realistic and free of inconsistency. Among the 

representative products of VR/AR, Microsoft Hololens, Google 

Project Tango and Magic Leap have all applied SLAM as a 

visual enhancement method. 

In the field of mobile robots, the existing mobile robots need to 

install multiple sensors in order to complete all-round obstacle 

avoidance. If the 360 camera is used as the sensor, the hardware 

cost can be reduced without sacrificing the obstacle avoidance 

performance, and the positioning and mapping can be improved 

at the same time. Sweeping robot manufacturers Ecovacs, 

Tammy, etc. use SLAM to allow sweepers to efficiently draw 

indoor maps, intelligently analyze and plan the sweeping 

environment, and complete sweeping tasks more efficiently. 

In the field of unmanned aerial vehicles(UAV), the use of 

omnidirectional sensors can make aerial photography more 

flexible, and better 3D reconstruction of buildings at high 

altitudes. SLAM can quickly build a local 3D map, and 

combined with geographic information system (GIS) and visual 

object recognition technology, it can assist UAVs to identify 

roadblocks and automatically avoid obstacles and plan paths. 

In the field of autonomous driving. SLAM technology can 

provide the function of visual odometer and integrate with other 

positioning methods such as GPS, so as to meet the needs of 

precise positioning of unmanned driving. 



 

 

V. CONCLUSION 

Starting from the paper 360VO: Visual Odometry Using A 

Single 360 Camera published in the 2022 IEEE International 

Conference on Robotics and Automation (ICRA), this paper 

analyzes the method proposed in this paper and proposes some 

possible solutions in this paper. The research status and 

commonly used SLAM frameworks in the field of SLAM are 

analyzed. And finally analyzes the commercial value and social 

value of SLAM system. 
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